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Executive Summary 

Alternative Intersections and Interchanges (AIIs) are a fast-growing design solution for locations 
with complex operational or safety concerns. Previous research funded by NCDOT identified a 
new family of AII designs composed of Grade-Separated Intersections. This project implemented 
existing operational analysis for planning level design and alternative analysis and developed a 
new planning-level safety performance estimation method – Movement-based Safety 
Performance Functions, or MBSPFs. 

MBSPFs make up a planning-level safety analysis method for estimating project-specific crash 
rates at intersections. The method estimates crashes at individual conflict points comprising an 
intersection primary influence area and non-conflict point crashes outside that influence area.  In 
addition, MBSPFs utilize individual turning movement volumes of conflicting movements rather 
than approach level AADT. The methodology showed promising results for both traditional and 
alternative intersection designs. The research team and StIC of the past project identified a set of 
improvements for the methodology to include traffic control and geometric features while also 
recommending further study and validation of the proposed prediction method(s).  

A robust dataset of 282, three and four-leg, signalized intersections in Charlotte, North Carolina 
was utilized for crash modeling.  In addition to individual turning movement volumes, several 
traffic control and geometric elements were collected to help the modeling process.  For traffic 
control, posted speed limit, left turn signalization type, and presence of no right turn on red sign 
were collected.  Geometric elements included the number and type of lanes, the relative angle 
between movements, lateral offset for left turns, right turn channelization type, and presence of a 
one-way street and/or proximity to a central business district (CBD).   

The model form for MBSPF utilized the traditional conflict point (CP) types noted in the 
literature – crossing, merge, and diverge – separately.  Other crashes not fitting one of the types 
of CPs were noted as non-conflict point (NCP) crashes.  These included crashes such as U-turns, 
rear-ends, run off road, or any other crash type not easily defined as a CP.  Several model forms 
were tested, with the most promising forms including negative exponential, negative binomial, 
and Hurdle.  Models were tested separately for NCP and each individual CP type using a 
simplified (volume only) and an expanded version which included traffic control and geometric 
variables found to be statistically significant.  Akaike Information Criterion (AIC) were used to 
directly compare model fit results across all model forms.  In addition to movement based 
volumes, three variables were found to be significant (with several correlated) –  NCP:  posted 
speed limit greater than 35mph and Crossing CP:  approach angle and left turn signal protection.  
Although statistically significant, the additional data collection effort needed for the effort was 
not deemed worthwhile based on our assessment, with a recommendation to use the simplified 
model forms for prediction – i.e. NCP AIC of 1652 vs. 1654 and CP_Crossing AIC of 6791 vs. 
6959 (expanded vs. simplified, respectively). 
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Cumulative residual (CURE) plots were plotted to compare the results of the models to the 
training dataset from the Charlotte intersections (75%).  The residuals show when bias may be 
present in one or more model estimates if the cumulative residual line passes beyond the 
confidence interval.  Based on this effort, CURE plots (95% confidence interval) showed a slight 
bias in the data at lower volumes between 10,000 and 20,000 AADT.  For minor AADT, the data 
fell within the bounds of the confidence interval in all ranges of AADT.   

Next, predicted crashes were plotted for traditional Highway Safety Manual (HSM) and MBSPF 
methods.  A test dataset was utilized from the Charlotte sample (25% set-aside) and 15 additional 
intersections from Cary, NC which were collected from a previous project.  Root mean square 
error (RMSE) and mean absolute percentage error (MAPE) showed that HSM crash predictions 
were approximately double the RMSE and MAPE values of MBSPF, indicating that MBSPF was 
able to predict crashes more accurately.   

Last, a planning level, Excel-based, crash prediction tool was provided which implemented the 
MBSPF and HSM models.  Detailed outputs allow for identification of high risk movements 
with the MBSPF model. 
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Chapter 1 : Introduction 

1.1 Background and Motivation 

To best understand the concerns of transportation professionals as it pertains to safety, one must 
first understand how the problem surfaced in the first place. Safety studies using crash data from 
treatment sites is not a new concept; however, the methods used to conduct these studies have 
evolved significantly over several decades. These methods have been deployed with great 
success on many intersection and interchange forms and usually provide insight on safety as it 
pertains to various crash types and severities for one or more modes. However, safety studies 
require crash samples over an extended period of time to be able to evaluate the safety of an 
intersection or treatment. This approach is especially problematic when considering new or 
innovative intersection concepts that have limited (or even no) crash history from which to draw 
conclusions. Even more frustrating is the fact that when new intersections are constructed, 
practitioners must wait at least two-to-three years to determine if the intersection was safe. 
Lastly, the intersection conversion collision modification factors (CMFs) that are eventually 
developed often have limited applicability because they do not account for the variation in site 
conditions. 

The most direct evidence of the challenges of evaluating the safety of new intersection types can 
be seen in FHWA’s guidance documents on alternative intersections. The first edition of the 
Alternative Intersections and Interchanges Report (AIIR) covers guidance on a number of topics 
for a plethora of alternative intersection types (Hughes, et. al, 2010). The major gaps in that 
guidance document center around understanding safety for motorists and multimodal users – 
especially intersection and interchange designs that had little-to-no implementations at that time. 
Beyond a small handful of designs, the safety guidance is relegated to basic conflict analysis. 
Even when looking at updated, stand-alone guidebooks which are based on several sites actually 
constructed in practice, the safety findings were often limited in application. This is due to 
limited sample sizes and sites with varying features and conditions. Thus, it was not possible to 
drill down to individual features to see where improvements can be made in designs, and no 
methods are provided to assess the safety for multimodal users. 

Recently, the FHWA has adopted a Safe System Approach, or SSA (FHWA, 2022), which 
among other things, helps mitigate some of the problems in addressing the safety of new 
intersection types. For roadway systems, SSA means looking at factors contributing to high 
severity crashes such as speed, relative angle, risk, and even movement complexity. The SSA 
framework is flexible in the choice of application to measure intersection safety because its goal 
is reducing relative risk to the driver, pedestrian, or bicyclist.  
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At this time, a few options exist in the literature that could extend SSA frameworks to 
intersections for all modes. The two primary conflict-based frameworks that are proposed in the 
literature are the 1) Safe System for Intersections (SSI) method and 2) Movement-Based Safety 
Performance Functions (MB-SPF). The SSI method for analyzing intersections uses a 
dimensionless safe system score, or “index”, based on the presence of various factors describing 
the intersection conflict points (Dunn, 2022). The SSI method is useful in that it can be applied 
to any type of intersection and accounts for pedestrians. However, 
its SSI score only provides an indication of relative crash severity 
(i.e., it is not crash frequency based), and it is an aggregated score 
for the intersection. As a result, the SSI score cannot be used to 
assess individual conflict points to determine where safety problems 
may be present and warrant safer alternatives. Because of this, SSI 
is best suited as a screening tool, such as during Stage 1 Intersection 
Control Evaluation (ICE) or the scoping phase of a project.  

On the other hand, the MB-SPF method developed by members of our team computes expected 
crash frequency based on many factors describing the individual conflict points. The primary 
differences between this method and the SSI method is that the MB-SPF is crash based (thus 
aligning with the Highway Safety Manual, or HSM), and it allows for individual conflict-point 
crash predictions to be calculated (which can support improving pieces of an intersection) – the 
SSI method and HSM methods do not provide a way to do this currently. This also means that 
the MB-SPF method could be adopted during the planning, design, and even operation of an 
intersection. In addition, the MB-SPF framework is easily extended to the evaluation of vehicle-
pedestrian and vehicle-bicycle conflicts and to a variety of conventional and unconventional 
intersection types. 

1.2 Research Objectives 

This project aimed to document and consider additional factors to include in the data collection 
and modeling process to better support NCDOT’s estimation of planning level safety 
performance. This will include extensive crash and turning movement analysis to enable analysis 
of more signalized intersection types and the individual design components present at a 
particular intersection.  The objectives of this research effort are: 

• Identify intersection features to be included in an improved MB-SPF model; 
• Collect operational and safety data across a broad spectrum of signalized intersection 

types; 
• Develop an improved MB-SPF model allowing for estimation of crashes using planning-

level project inputs; and 
• Develop MB-SPF spreadsheets for use by NCDOT staff and consultants. 

 

The MB-SPF method 
proposed by this team 
is based on crash data 
and computes 
expected crash 
frequency.   
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1.3 Organization of the Report 

This report is organized as follows. Following this introductory chapter, Chapter 2 covers the 
pertinent technical literature on the topic of novel approaches to intersection crash risk and 
prediction methods. Chapter 3 covers the data collection and development of the classified crash 
database. Chapter 4 provides a discussion on the analysis and modeling methods used. Chapter 5 
summarizes the results and performance of the model and recommendations for future use. 
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Chapter 2 : Literature Review 

The HSM relies on the application of CMFs to investigate the expected safety of intersection 
designs. To develop a CMF, a sufficient number of existing facilities must have been open long 
enough to capture multiple years of crash data. This requirement for non-typical design elements 
and intersection types results in a lack of CMFs and therefore, limited ability to apply HSM 
methods. These limitations motivated researchers to test and establish numerous surrogate safety 
metrics, and conflict point analysis is one of them. Surrogate measures such as conflict points 
have also been proposed to assess pedestrian/bicycle safety at intersections due to the rarity and 
randomness of pedestrian and bicycle crashes.  

A conflict point is the meeting of two movement lines through an intersection. For vehicles, 
these conflict points are categorized as either merging, diverging, or crossing. Crash types like 
rear-end, head-on, and sideswipe are not related to any conflict point; together, those are referred 
to as non-conflict point crashes. Tools for counting and modeling conflict points have been used 
as a planning-level approach to compare the safety of different intersection and treatment 
designs. 

2.1 Summary of Vehicle-Vehicle Conflict-Based Crash Prediction Methods 

The rudimentary concept of conflict points at intersections seems simple, but it laid the 
foundation for assessing the safety of alternative intersections and incorporating other features, 
for example, traffic operational and geometric characteristics and crash severity, specific to each 
conflict point (Chase et al., 2020; Lee, 2021; Lee et al., 2022; VDOT, 2022; Dunn ,2022)). Chase 
et al. (2020) and Lee (2021) proposed a modeling framework that predicts crashes by conflicting 
points where traffic volumes (AADT-based) of the associated movements are the predictor 
variables. Our team is endeavoring to improve the model by including different operational and 
geometric features in the model input data in an ongoing research effort. The generic model form 
is called the movement-based safety performance function (MB-SPF). The details of the model 
form are described in Task 3 of the proposal. 

The current model form includes traffic volume and conflict type as the primary categorical 
variables; however, ongoing research (Cunningham, 2023) led by our team is investigating other 
features such as number of lanes, lane configurations (shared vs. exclusive), the lateral offset 
between thru and left movements, right-turn on red allowance, presence of turn-bay, relative 
angle, speed limit, approach curvature, movement-based counts (replacing AADTs), and left turn 
signal type (i.e. protected, permissive, and protected-permissive movements). Additionally, 
intersection skew was identified by Harkey (2013) as a potential significant predictor of 
intersection level crashes.. 

Like crash frequency, crash severity is also associated with the conflict point type. To factor it in, 
the Virginia Department of Transportation (VDOT) proposed a weighted conflict-point count, 
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where the weights are determined based on the relative crash costs (VDOT, 2017). The average 
crash cost was estimated based on the records of crashes with varying severities reported in 
Virginia between 2011 and 2015. It suggests that the weight ratio for a crossing, merging, and 
diverging conflict should be 2:1:1. The VDOT Junction Screening Tool (VJuST) was developed 
to compare the weighted conflict points of different alternative intersection designs. 

Dunn et al. (2022) incorporated both exposure, crash severity, and the momentum change 
associated with crashes through a dimensionless metric called the safe system intersection (SSI) 
score. At the core of SSI, it utilizes the concept of conflict points. First, two parameters 
representing traffic exposure and crash severity and two representing movement complexity are 
combined (Eq. 1). An intersection is ranked between 0 to 100 for each conflict type by scaling 
the combined parameter E as shown in Eq. 2.  

   (1) 𝐸𝐸𝑡𝑡 = ∑ [𝐼𝐼𝑖𝑖,𝑡𝑡 ∗ 𝑃𝑃(𝐹𝐹𝐹𝐹𝐼𝐼)𝑖𝑖,𝑡𝑡 ∗ 𝐿𝐿1,𝑖𝑖,𝑡𝑡 ∗ 𝐿𝐿2,𝑖𝑖,𝑡𝑡]
𝑛𝑛𝑡𝑡
𝑖𝑖=1     

 (2) 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆, 𝐹𝐹𝐹𝐹𝐼𝐼𝑡𝑡 = 100 ∗ exp (−1
𝑧𝑧
∗ 𝐸𝐸𝑡𝑡) 

 

where:  
𝐼𝐼𝑖𝑖,𝑡𝑡 = the exposure index for conflict point i of type t (𝑆𝑆 ∈ 

{𝑆𝑆𝑆𝑆𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝑚𝑚, 𝑑𝑑𝐼𝐼𝑑𝑑𝑆𝑆𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝑚𝑚, 𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚}). It depends on the daily volume of two 
movements associated with the conflict point; 

𝑃𝑃(𝐹𝐹𝐹𝐹𝐼𝐼) = the probability of at least one fatality or serious injury resulting from a crash 
related to the conflict point, estimated based on the conflict angle and the 
change in momentum for the conflicting vehicles. The second parameter is 
estimated from the expected operational speed of the movements; 

𝐿𝐿1, 𝐿𝐿2 = complexity factors. 𝐿𝐿1 captures complexity added by the characteristics of 
conflicting traffic and how much of that complexity is moderated by the traffic 
control system. 𝐿𝐿2 accounts for indirect and counter-intuitive movements that 
may add complexity for pedestrians and cyclists.  

𝑧𝑧 = a scaling parameter. 
 
Some challenging aspects of such disaggregated models based on conflict points are a) correctly 
identifying the conflict point associated with a crash, b) crash frequency becoming sporadic due 
to the categorization of crashes, c) accurately collecting crash severity and traffic operational 
data, and d) monetizing dimensionless scores. 

Regarding the first challenge, past studies developed separate SPFs by crash type to address the 
limitation of traditional models (Abdel-Aty et al., 2005; Harwood et al., 2000; Persaud & 
Nguyen, 1998; Wang et al., 2019), but the ambiguity in crash data could lead to imprecise 
classification (Hauer et al., 1988). Hauer et al. (1988) remarked that crash classification based on 
vehicle maneuvers is more appropriate. They developed separate models for fifteen crash 
patterns, but only four yielded statistically significant coefficients. Similarly, Persaud and 
Nguyen (1998) developed separate models for 25 crash patterns by vehicle streams, but only six 
yielded statistically significant coefficients. The same issue led Lee et al. (2022) to group merge, 
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diverge, and rear-end crashes into “inbound approach” and “outbound approach” crashes based 
on the crash locations relative to the intersection. 

Regarding the second challenge, both Persaud and Nguyen (1998) and Hauer et al. (1988) stated 
that many crash patterns yielded very few crashes, so the estimated models showed low 
reliability when they were modeled separately. The third challenge is critical for MB-SPF and 
SSI-based approaches since collecting data on features like approach speed, traffic control types, 
and horizontal and vertical curvature of roads requires astute planning and execution. Knowing 
these challenges from the literature and addressing them are essential for accomplishing the 
project goals. To the fourth challenge, predicted safety assessments are often monetized to 
analyze the benefit-cost ratio of potential improvements. As proposed by the research team, 
crash-based predictions allow for such monetization as it predicts a quantifiable number of 
crashes and related severity.  

Traditionally, negative exponential or negative binomial models are utilized for crash prediction 
models (Hauer et al. 1988) which can typically handle the skewed distributions of crashes. 
Crashes become much rarer with MBSPF definitions, thus additional models were considered to 
handle the high number of zero crash observations. Hosseinpour et al (2014) present seven 
model forms including two formulations of the hurdle model which separately models the 
probability of a zero outcome and the (truncated) count distribution. The hurdle model has been 
used since in many other safety studies involving frequent zero observations (Yu et al., 2019; Ma 
et al., 2015; Chen et al., 2016) 

2.2 Summary of Vehicle-Multimodal Conflict-Based Crash Prediction Methods 

Investigation of conflict-based crash prediction models for pedestrians and bicycles dates to the 
late twentieth century. An early study by Davis et al. (1989) found promising relationships 
between pedestrian and vehicle conflicts and developed a reliable model to predict pedestrian 
crashes. The study intersections were divided into three groups based on high, medium, and low 
pedestrian crash frequencies. A discriminant equation was developed for each group to estimate 
pedestrian crashes based on the number of pedestrian and vehicle conflicts, pedestrian volumes, 
vehicle volumes, and number of lanes. This method is challenging for intersections not yet built, 
as it is not known to which of the three groups the intersection belongs. 

Amini et al. (2022) developed a conflict risk model using video data to evaluate pedestrian 
conflicts with other road users. Several other studies processed video data using trajectory 
tracking software to extract and analyze the conflicts between vehicles and pedestrians/bicycles 
(Darzian et al., 2020; Zhang and Abdel-Aty, 2022, Kittelson et al., 2022). Such approaches are 
often used as a real-time evaluation to improve traffic safety and may be challenging to use in 
predicting multimodal crash frequency and severity. 
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While investigating the relationship between conflict and crashes, El-Basyouny et al. (2013) 
proposed a two-phase model where a lognormal model is applied in the first phase to predict 
conflicts using traffic volume, area type (urban/suburban) and some geometric-related variables 
as covariates. In the second phase, a conflict-based negative binomial (NB) safety performance 
function (SPF) is employed to predict crashes. The results show that the moderating effects of 
conflicts on collisions are non-linear with decreasing rates. Although this research is not focused 
on pedestrian/bicycle crashes, the two-phase model with a conflict-based mentality was adopted 
in similar research (Sacchi & Sayed, 2015; Sacchi & Sayed, 2016). 

Bonneson et al. (2012) calibrated regression models to predict pedestrian-vehicle conflict 
frequencies. The analysis revealed that conflict frequency is correlated with pedestrian volume, 
left-turn volume, and other geometry characteristics. The pedestrian and vehicle conflict 
frequencies were used to obtain the number of pedestrian and vehicle crashes at a site. 

Review of previous research on conflict-based pedestrian/bicycle crash prediction methodology 
revealed that the potential limitation towards prediction of pedestrian and bicycle crashes is the 
lack of a reliable exposure data to represent the amount of pedestrian and bicyclist activities at a 
given intersection. Bonneson et al. (2012) utilized regression models to estimate pedestrian 
volumes based on pedestrian delay, the conflicting vehicle flow rate, and the probability that the 
WALK indication is presented. A similar concept can be applied to estimate bicycle volumes. In 
addition, the current research shows a lack of consistency in defining vehicle-pedestrian and 
vehicle-bicycle conflict point types. 

Last, multimodal crashes are rare events, and as such, could make modeling challenging in 
certain situations. Below describes some of the issues noted in the literature that must be 
considered when modeling multimodal users. 

• Excess zeros. Common in pedestrian and bicycle crash data, the presence, in a database, 
of many sites with zero crashes often results in a crash distribution that is not well-
described by the negative binomial distribution. A zero-inflated negative binomial 
distribution has been found by Shankar et al. (2003) to provide a better statistical fit to 
crash data. However, it has some theoretical inconsistencies that limit the interpretation of 
regression coefficients (Lord et al. 2007). Thus, Lord et al. (2007) recommend increasing 
the time scale (i.e., number of years in the data time-period) or including unobserved 
heterogeneity terms in the regression analysis (e.g., random parameters). Our team 
employed these techniques for NCHRP Project 17-70 to develop predictive models for 
roundabouts, which also have a number of zero crash sites. 

• Data time period. Increasing the time scale associated with each site is one technique for 
overcoming the adverse effects of having a large number of sites with no crashes. The time 
scale is increased by increasing the number of consecutive years in the crash data time 
period. A generalized estimating equation (GEE) model can be used to control for time 
trends in the data while allowing for a crash period that is multiple years in duration (Lord 
and Persaud, 2000). Another challenge related to increasing the data time period is it 
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increases the possibility that the infrastructure has changed (e.g., turn bay added), so it is 
important to use historical records and aerial imagery to confirm the sites in the database 
have not changed. 

• Pedestrian and bicycle exposure. Including pedestrian and bicycle exposure measures in 
the predictive model improves its reliability. Using surrogates for pedestrian or bicycle 
volume (e.g., land use, sidewalk width, bike lane presence) as inputs to a model produces 
less reliable estimates of average crash frequency. Using crowd-sourced pedestrian and 
bicycle activity data (e.g., Strava, CycleTracks) in a model has been found to provide more 
reliable estimates (relative to other surrogates), but the proprietary nature of these activity 
data will likely limit implementation of the predictive models. Using pedestrian or bicycle 
volume will likely provide the most reliable model predictions. 
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Chapter 3 : Data Collection and Extraction 

This chapter describes the data collection effort carried out by the research team for developing 
the safety performance functions. It begins with a discussion of the site selection criteria and a 
description of the characteristics of the selected sites. Then, it describes the geometric and crash 
data elements for which the team collected and cleaned field data. Following that, we present a 
summary of the data elements.  

3.1 Identify Study Sites 

The choice of a data collection site for any research purpose is strongly governed by what data 
elements must be observed and data availability. For developing a movement-based safety 
performance function, the key element related to the response variable is the crash information 
for each intersection over a three to five years period, with details like movement types of the 
involved units in each crash. The duration of the study period is important in order to estimate 
the long-term average crash statistics for each site. 

On the predictor variable side, one would need traffic and geometric characteristics, such as, 
traffic volumes, number of lanes, and lane types for each movement, posted speed limit and 
relative angle of each approach, and traffic control type for each intersection. Details about these 
data elements are described later in this chapter. Based on these required data elements, the 
research team defined a set of criteria for selecting each data collection site: 

• Availability of detailed crash, road geometric, and traffic data 
• No significant change in the geometric features of the sites during the study period 

Based on these criteria, the research team selected 
282 signalized intersections in Charlotte, NC as the 
study sites. This list is a subset of the sites that 
NCDOT used to test the initial MBSPF models that 
the research team developed earlier. The advantage 
was that the list of crashes for each of these 
intersections was already available—thanks to 
NCDOT. Several intersections with adjacent stop-
controlled driveways, confusing road names, and 
with significant geometric changes during the study 
period were removed from the original set. Figure 
3-1 shows the location of the selected sites in 
Charlotte.  

 
 

Figure 3-1: Location of the study 
intersections in Charlotte 
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3.2 Data Elements 

In the proposed model forms, the response variable is the crash frequency by conflict point types 
and the predictors are various geometric and traffic parameters by intersections, approaches, or 
movements. The following subsections describe each, starting with the response variable. Each 
data element was identified using a combination of crash reports, Google Earth and NCDOT-
provided datasets. Details on the methods for conflict point classification and the relative angle 
between movements is located in Appendix A. 
3.2.1 Crash Frequency by Conflict Points 

The MB-SPF consists of two independent model forms: the conflict point safety performance 
function (CP-SPF) and non-conflict point safety performance function (NCP-SPF). The CP-SPF 
estimates the CP crash frequency at the CP-level. The CP crashes are ones that occur between 
two conflicting movements at a CP. The form under this category is subdivided into three parts 
based on FHWA’s (Rodegerdts et al., 2004) classification of intersection conflict points: 
crossing, merging, and diverging. Figure 3-2 shows conflict point diagrams for a conventional 
four-legged intersection. 
 

 
Figure 3-2: Conflict point diagram for a conventional four-legged 
intersection (Rodegerdts et al., 2004) 

 
The NCP crashes are those not associated with conflicting movements at the intersection. They 
include but are not limited to rear-end, sideswipe, head-on, and single-vehicle crashes. Rear end 
crashes are considered NCP despite many instances being associated with conflict points due to 
the difficulty of assigning which conflict point may have contributed to the rear end collision. 
For instance, a vehicle intending to diverge stopped cautiously, creating a queue, and a vehicle 
failed to notice the queue, causing the rear end. The officer will note the presence of the queue in 
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the report, but fail to state what causes it. Similarly, the queue may have been the result of cycle 
failure, where even vehicles with different destinationshave not yet reached the actual conflict 
point. Hence, the team felt confident assigning rear ends collisions to the NCP category if 
conflict-point related information was not present.  

Considering that many intersection crashes are not associated with a conflict point, the separate 
modeling of NCP crashes from the rest seems an appropriate approach for quantitative 
evaluation of intersection safety performance. 

The team obtained detailed reports of all crashes that occurred between January 2015 to 
December 2019 for 282 signalized intersections in Charlotte, North Carolina. Each crash was 
assigned to an intersection if it occurred within 150’ from any approach of the intersection. The 
team put an extensive effort to cross-check the data and to identify the conflict point type of each 
crash by reviewing the police report. In total, the team reviewed more than 18,000 crash reports, 
identified the correct directions of travel of the entities involved in a crash for about 6,000 
crashes, and went through a multi-level cross checking of the work. A detailed description of the 
effort is presented in Appendix A. 

Since pedestrian and bicycle crashes are typically modeled separately from vehicular crashes, the 
team removed any crash that involved such entities. Also, the team removed the following 
categories because either the vehicles’ maneuver was complex or factors outside the intersection 
likely played a role: crashes involving U-turning or parked vehicles and at intersections where 
there is a driveway within 150’ of any approach.  

3.2.2 Movement-based Volume 

Traffic volume represents the exposure of traffic to crashes. The main data here are the AADT 
information for each road at an intersection. For non-conflict point crashes, the total entering 
traffic per day from each of the two intersecting roads are used as the predictor variable for 
exposure. Hence, we have two exposure variables: one for the major and another for the minor 
direction. The major and minor directions are determined based on AADTs. Since AADT for a 
leg is reported for the total bidirectional traffic, the average AADT of the opposing legs are used 
to estimate the exposure from that direction. Figure 3-2(a) shows a typical four-legged 
intersection with two-way streets on all legs, along with the equation to estimate exposures and 
how to determine major and minor directions. The same equation would apply for T-
intersections if the AADT for the missing leg is set to zero. For intersections with one-way 
streets, however, it would be different—the AADT on the entry leg should be used to estimate 
the exposure on the one-way direction instead of averaging it with the exit leg AADT. Figure 3-
2(b) illustrates it with an example. NCDOT provided the AADT data to the research team which 
we verified later with the NCDOT AADT web-based map (NCDOT, 2023).  
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For conflict-point crashes, the exposure variable requires more fine-grained data than AADT. 
The movement-specific volumes are estimated from the AADT and turning movement 
percentages for each movement. For example, for the crossing conflict between the northbound 
and eastbound thru movements, the estimated volumes for them are used as the predictor 
variables representing the exposure to the conflict point. Similar to non-conflict point crashes, 
the higher of the two is regarded as the major volume. Note that for merge and diverge crashes, 
determining the exposure is more complex than for crossing and NCP crashes because the actual 
merge and diverge points of crashes may vary significantly. A detailed explanation of that 
process is provided in Chapter 4. 

 
(a) 
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(b) 

Figure 3-3: Estimating exposures from AADTs 

3.2.3 Number and Type of Lanes 

This variable is used for conflict point crash models only. We used satellite images from Google 
Earth to get the number and lane type for each movement. The movements are classified into two 
groups—one with exclusive lanes only and another when one or more lanes are shared with 
another movement.  

3.2.4 Posted Speed Limit 

Posted speed limit data for each leg were collected from NCDOT’s speed limit web-based map 
(NCDOT, 2023) and from Google Street view (when needed). The posted speed limit informs 
the estimation of the relative speed drivers are moving with respect to each other at each conflict 
point. For example, if the North-South approach has a posted speed limit of 55 mph, and the East 
West approach as a posted speed limit of 25 mph, then at conflict point C4 (from figure 3-2), the 
conflicting vehicles are travelling with a difference of around 30 mph.  

3.2.5 Relative Angle between Movements 

The heading (i.e., the angle with respect to the compass North) of each leg at an intersection was 
measured using Google Earth’s Ruler tool. The relative angle between a pair of movements was 
estimated from that. For diverge conflict, the movement pairs are always on the same approach, 
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so the relative angle is always zero. Hence, this predictor is used only for the other two conflict-
point crashes. 

For crossing and merge conflicts at an intersection where all the legs are cardinally aligned (i.e., 
aligned either with the compass N-S or E-W), the angle between the conflicting movement pairs 
will be 90 degrees. If this angle is less than 75 degrees, it is considered as acute whereas angle 
greater than 105 degrees is considered as obtuse. The angle is always measured on the outgoing 
side of both arrows as shown in Figure 3-4. 

 
Figure 3-4: Relative angle between movements 

3.2.6 Traffic Control Type for Left-turns 

The traffic control type for left-turn movements is of three types: protected, permitted, and 
protected-permitted. If the signal head is found to have three sections (from Google Street view), 
the presence of arrow or ball indicates whether it is a protected or permissive movement. For a 
four-section or dog-house signal, we classified them as the third type but it is difficult to know 
the exact control type; it can be either protected or permissive or their combination. This is 
useful for crossing conflicts, specifically the points which involve through and right turn 
movements conflicting with left turn movements.  

Table 3-1: Determining traffic control type for left-turns from signal heads 
Three-section head Four-section head    

(Protected/ 
Permissive)  

Doghouse 
(Protected/Permissive) Green/yellow 

ball (Permissive) 
Green/red/yellow 
arrow (Protected) 
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3.2.7 Lateral Offset for Left-turns 

This predictor represents how difficult (or easy) it is for left-turns with permissive or protected-
permissive control to see the opposing thru traffic. It is one of the factors that affects the sight-
distance for left-turn traffic—other factors like the vertical and horizontal curvature are difficult 
to collect field data on and hence, not included here. 

The lateral offset can take one of the three levels: positive, negative, and base. If the subject 
vehicle’s lane (see the red vehicle in Figure 3-5) is pushed inward toward the opposing thru, it 
would have a clear view of the oncoming traffic. In that case, the left edge of the lane (the red 
line in Figure 3-4) will be toward the opposing thru traffic with respect to the extended right 
edge of the opposing left-lane (the green line in Figure 3-5). This is a positive offset. On the 
contrary, if the subject vehicle’s lane is laterally away from the opposing thru, it would have a 
less clear view of the opposing thru traffic and have a negative offset. If the distance between the 
green and red lines shown in Figure 3-5 is less than 3 ft, the offset is considered as zero or at 
base level.   

Just as with the previous variable, this is useful for crossing conflicts, specifically with through 
movements conflicting with left turn movements.  

 
Figure 3-5: Lateral offset for permissive and protected-permissive left-turns 
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3.2.8 Right-turn Channel Type 

There predictor can take one of the three values: no channel, channel with free-flow acceleration 
lane, and channel with no acceleration lane. Figure 3-6 shows the two types of channels 
commonly used for right-turn treatments. This and the following predictor are used for merge 
conflicts involving right-turns. 

 
Figure 3-6: Right-turn channelization types 

 
3.2.9 No Right-turn on Red Sign 

This predictor represents whether a right-turn on red is allowed or not. We used Google Street 
view to find signs like the ones listed in Figure 3-7. This is useful for both merge and diverging 
conflict point types.  

         
Figure 3-7: Different types of mandatory signs for right-turning traffic 

3.2.10 Presence of One-way Street and Proximity to CBD 

Initially, the team categorized the intersections based on whether any approach is a one-way 
street or not. Later, the team found that most of the sites with a one-way approach are location 
within the CBD of Charlotte, as shown in Figure 3-8. Because the sites in the CBD have several 
unique characteristics like narrow lanes and high density of driveways and on-street parking 
which prompt increased in-and-out traffic, a new variable is defined based on this factor. The 
roads shown by the callouts in Figure 3-8 create the periphery of the CBD we defined here. Note 
that among the study sites, there is only one intersection with a one-way street that is located 
outside of this CBD. At the end, we fed both variables in the modeling approach and let the 
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process determine (more about the modeling and variable selection process are described in 
Chapter 4). This was specifically useful with non-conflict point crashes.  

 
Figure 3-8: Study sites with and without one-way approaches in Charlotte CBD 

3.3  Generate the Fused Database 

Following the collection and cleaning of all the data described above, we developed four 
databases to feed in the modeling process. One for the NCP crash model and the rest for the three 
CP crash models.  

In the NCP database, each data point (i.e., each row) is for a particular intersection. Therefore, 
the total number of data points in it is 282. The response variable is the total NCP crash 
frequency for an intersection over the study period. The database contains the following items as 
potential independent variables: entering volumes from the major and minor street per day, 
posted speed limit, presence of one-way street/CBD proximity. 

In the crossing-conflict point database, each data point is for a crossing conflict point. For 
example, for a typical four-legged intersection, there would be 16 data points. Similarly, in the 
merge and diverge-conflict point databases, a typical four-legged intersection would have eight 
data points in each. Table 3-2 shows which independent variable is considered as a potential 
predictor for which models. 

3.4 Discussion of Included and Excluded Crashes 

Not all crash types were included in the dataset, or were assigned to NCP by default. For 
instance, U-Turn movements were assigned NCP as they didn’t fit one of the traditional 32 
conflict points. Additionally, crashes that involved more than two vehicles were assigned NCP if 
the originating collision could not be identified, as assigning the crash to a specific conflict point 
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was very difficult and inconsistent depending on the narrative. Additionally, incidents that 
involved pedestrians, scooters, or bicycles as the second vehicle were also excluded as this also 
would eschew classification into traditional conflict points. Lastly, drivers who used the incorrect 
lane for their desired movement or traveled into opposing lanes were also categorized NCP, as 
this also is not a recognized conflict point.  
 
Crashes that were included but required some additional data cleaning included crashes where 
the crash report diagram was misaligned. Team members used the narrative as well as satellite 
imagery to determine the correct alignment of vehicles.   
3.5 Summary of the Variables 

Table 3-2 below lists the predictors described above and their distribution in the database. Levels 
with few responses may be grouped together for modeling purposes. 

Table 3-2: Database Variables 
Predictor 

name 
Type Distribution Potential use            in 

model(s) 
1. 
Movement-
based 
volume 

Numerical 

- 

All 

2. Number 
of lanes by 
movement 

Numerical 
- 

Crossing, merge, and 
diverge 

3. Type of 
lane by 
movement 

Categorical i. All exclusive: 50% 
ii. All shared: 39% 
iii. Mix of shared/exclusive: 11% 

Crossing, merge, and 
diverge 

4. Posted 
speed limit 

Numerical - All 

5. Relative 
angle 
between two 
crossing 
movements 

Categorical i. Base: 81% 
ii. Acute: 9% 

iii. Obtuse: 10% 

Crossing and merge 

6. Left-turn 
control type 

Categorical i. Protected: 42% 
ii. Permissive: 34% 
iii. Protected-permissive: 24% 

Crossing and merge 

7. Left-turn 
lateral offset 

Categorical i. Base: 35% 
ii. Positive: 21% 
iii. Negative: 44% 

Crossing 

8. Right-
turn 
channelized? 

Categorical i. Yes: 5% 
ii. No: 95% 

Merge and diverge 
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9. Right-
turn on red 
allowed? 

Categorical i. Yes: 99% 
ii. No: 1% 

Merge and diverge 

10. Presence 
of one or 
more one-
way street 

Categorical i. Yes: 9% 
ii. No: 91% 

Non-conflict point 

11. 
Intersection 
within CBD 

Categorical i. Yes: 12% 
ii. No: 88% 

Non-conflict point 
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Chapter 4  Methodology 

This section presents the methodological details of the proposed safety performance function. It 
begins with identifying the possible data sources for the predictor variables of the model because 
these data must be collected or estimated in an appropriate fashion for applying the model. Then 
the model development and testing procedures are explained. Finally, the performance measures 
and limitations of the model are described. Following that, the modeling process is presented for 
each category of crashes predicted.  

4.1 Conflicting Movement Volumes for Merge and Diverge Conflicts 

In the previous chapter, we showed how we collected the data for different elements of the 
proposed models and how the variables are defined. While those discussions are sufficient for 
Chapter 3, the modeling process requires a clear delineation of how the conflict points are 
defined, particularly the merge and diverge conflicts. This is because the sequence of merging or 
diverging of thru, left-turning, and right-turning vehicles can vary across crashes.  

For merge conflicts, while most predictors remain unchanged, the exposure to traffic (i.e., the 
conflicting movement volumes) varies based on this sequence. To further illustrate, consider 
Figure 4-1, which we borrowed from Figure 3-1 and zoomed in on merge conflict points M5 and 
M6. The eastbound thru (EBT) movement first merges with southbound left (SBL) at M5, then 
their combined volume merges with northbound right (NBR) at M6. Hence, the pair of 
conflicting movement volumes (CMVs) are 𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 and 𝐶𝐶𝐶𝐶𝑉𝑉𝑆𝑆𝐸𝐸𝑆𝑆 for M5. For M6, they are 
𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸+𝑆𝑆𝐸𝐸𝑆𝑆 and 𝐶𝐶𝐶𝐶𝑉𝑉𝑁𝑁𝐸𝐸𝑁𝑁. Upon investigating different intersection geometry, the team decided 
that this sequence is prevalent if i) the right turn (in this example, NBR) is channelized AND ii) 
the thru movement has only one lane.  

When there are multiple thru lanes, such as in Figure 4-2, the left-turn and right-turn merge with 
the thru movement separately.  The CMVs in that case would be: 𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸/2 and 𝐶𝐶𝐶𝐶𝑉𝑉𝑆𝑆𝐸𝐸𝑆𝑆 for M5 
and 𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸/2 and 𝐶𝐶𝐶𝐶𝑉𝑉𝑁𝑁𝐸𝐸𝑁𝑁. 

 
Figure 4-1: Merge condition where left 
turn volumes may conflict with right 
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Figure 4-2: Merge condition where left turn 
volumes do not conflict with right 

 
Diverge conflicting volumes can be similarly defined, with the primary consideration of 
including turning movement traffic that hasn’t separated with the through traffic such as when 
turn bays open much earlier for left turns. Separation of turning movement traffic does not 
happen for certain lane configurations like shared LTR lane approaches. 

4.2 Model Formulations and Limitations 

Several models were formulated to describe the effect of volume and geometric variables on 
incident rates. The models were broken down into several categories, Non-Conflict Point, 
Crossing Conflict Point, Diverge Conflict Point, and Merge Conflict point. Details of each are in 
the following sections. The data used is at the conflict point level, that is, one point on the 
conflict diagrams above, unless otherwise noted. Three primary model formulations were 
attempted for each of the categories:  Negative Exponential, Negative Binomial, and Hurdle. A 
Negative Exponential model is often used for crash modeling which is based on the Poisson 
distribution and assumes that the probability of observing a specific number of crashes Y in a 
given period follows a Poisson distribution with a constant rate parameter λ that can be estimated 
using regression coefficients. The crash frequency is then predicted using: 

𝑃𝑃(𝑌𝑌 = 𝑘𝑘) = 𝑒𝑒−𝑘𝑘𝜆𝜆𝑘𝑘

𝑘𝑘!
, for k=0,1,2,… 

 
The negative exponential model assumes that the probability of a crash occurring at any given 
location is independent of other observations. If the true relationship between predictors and 
crash frequency is nonlinear after transformation, the linear model assumption may lead to 
misspecification and biased estimates. The negative exponential model does not account for 
overdispersion, which can result in underestimation of uncertainty and incorrect inference. 
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In the Negative Binomial model, the probability of success p (i.e., the probability of a single 
crash) can be modeled using multiple predictor variables through regression. The formulation 
becomes: 

logit(p)=Xβ, 
 
where X represents the matrix of predictor variables with dimensions n×m, β represents the 
vector of regression coefficients with dimensions m×1, and logit(p) is the log-odds of success.  
Additionally, the shape parameter r governing overdispersion remains constant and is typically 
estimated separately. To predict crash frequency, we use the negative binomial distribution: 

𝑃𝑃(𝑌𝑌 = 𝑘𝑘) = �𝑘𝑘+𝑟𝑟−1
𝑘𝑘

� 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑟𝑟, for k=0,1,2,… 
 
The model accounts for overdispersion, allowing the variance to exceed the mean, which is 
particularly useful when incorporating regression to model complex relationships. Interpreting 
the coefficients in the negative binomial model, particularly in the presence of overdispersion, 
can be challenging and may require careful consideration of model assumptions and diagnostics. 

The Hurdle model attempts to address the high frequency of zero observations which can occur 
in crash data. The hurdle model assumes that the process governing crash occurrence can be 
divided into two parts: the probability of observing at least one crash and the conditional 
distribution of crash counts given that at least one crash has occurred, both modeled through 
regression. The formulation used for this research utilized a logit model for the hurdle 
component and a negative binomial model for the count component. 

The two-part nature of the hurdle model, combined with regression, can make interpretation of 
results challenging, particularly for non-specialist audiences. The hurdle model's performance 
may be sensitive to the choice of distributional form for both parts and the specification of 
regression parameters, potentially leading to biased estimates if misspecified. The research team 
tested a number of formulations of the hurdle prior to the final selected models. 

Final selection of the models was performed comparing the Akaike Information Criterion (AIC) 
which measures model fit and can be directly compared across all the model forms tested. Lower 
AIC indicates better model fit, however this comparison is only valid for a given dataset and, as 
an example, wouldn’t be appropriate to compare NCP vs CP models. Adjusted R squared is 
shown where possible for Poisson or negative binomial models which accounts for the number of 
explanatory variables used in addition to the model fit. 

Finally, the crash dataset included 5 years of crashes summed up for each observation. In order 
to account for this, the number of years is used as an offset variable so that the final prediction is 
in units of crashes per year. For negative binomial models, this offset is added into the constant 
but for the Hurdle it must be re-specified in the prediction. This dataset was split into a 75% 
training dataset and 25% test dataset. 
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4.2.1 Non-Conflict Point Model 

The Non-Conflict Point (NCP) model started with a basic approach with only the volume 
predictors using the following form. This method was also used previously in the original 
research that developed the MBSPF concept (Chase et al., 2020).  The overall AIC for this model 
was 1654 and adjusted R squared of 0.6492. 

𝑇𝑇𝐼𝐼𝑆𝑆𝑆𝑆𝑇𝑇 𝑁𝑁𝐶𝐶𝑃𝑃 𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆 = 𝑆𝑆  𝛽𝛽0+𝛽𝛽1∗log(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 𝑣𝑣𝑚𝑚𝑣𝑣)+𝛽𝛽2∗log(𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟 𝑣𝑣𝑚𝑚𝑣𝑣) 
 
Further explanatory variables were added where they were found to be statistically significant at 
p<0.05. Initially, the model was tested with whether a one-way street was present. After further 
analysis, it was found that this was highly correlated with whether the site was in the CBD, 
however after removing insignificant predictors, the only feature included was whether all 
approaches were posted above 35mph. As a result, the final model was of the form: 

𝑇𝑇𝐼𝐼𝑆𝑆𝑆𝑆𝑇𝑇 𝑁𝑁𝐶𝐶𝑃𝑃 𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆 = 𝑆𝑆  𝛽𝛽0+𝛽𝛽1∗log(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 𝑣𝑣𝑚𝑚𝑣𝑣)+𝛽𝛽2∗log(𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟 𝑣𝑣𝑚𝑚𝑣𝑣)+𝛽𝛽3∗𝑂𝑂𝑣𝑣𝑒𝑒𝑟𝑟35 
 
with the final variables being 1 if the condition is true, and 0 otherwise. This model has an 
adjusted R squared of 0.6555 and an AIC of 1652. This is the best performing model, and further 
model forms were not necessary due to the lack of frequent zeroes in the NCP dataset. 

4.2.2 Crossing Conflict Point Model 

This model began with the same basic form as the NCP model. Unfortunately, it had poor 
predictive power with an adjusted r-squared of 0.2297 and an AIC of 6959. Review of the 
response variable indicated frequent 0 observations which are likely affecting model fit. 

The Hurdle model was attempted due to the frequency of zero observations found in the crossing 
CP dataset. In defining the model form, explanatory variables can be used for either the zero 
hurdle model portion, the count model, or both. Out of all the potential explanatory variables, 
“control” and “approach angle” were found to be significant, where Control is a categorical 
variable referring to whether or not the left turn is protected, permitted, or both which was 
significant in only the count model and Approach Angle is a binary variable that is true when the 
intersecting angle of the two approaches are at least 15 degrees further than the expected angle 
(90 or 180 depending on movement combination) which was significant in both models. Below 
is the model form which had an AIC of 6791, indicating that the model performance was more 
related to the data itself rather than a poorly developed model. 

Zero hurdle (Poisson):  
𝑁𝑁𝐼𝐼𝐼𝐼 − 𝑧𝑧𝑆𝑆𝐼𝐼𝐼𝐼 𝐶𝐶𝑃𝑃 𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆 ~𝛽𝛽0 + 𝛽𝛽1ln(𝑆𝑆𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝑉𝑉) + 𝛽𝛽2 ln(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝑉𝑉)

+ 𝛽𝛽3𝐴𝐴𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼ℎ_𝐴𝐴𝐼𝐼𝑚𝑚𝑇𝑇𝑆𝑆 
 
Count model (negative binomial):  
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𝐶𝐶𝑃𝑃 𝐶𝐶𝐼𝐼𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆 ~𝛽𝛽0 + 𝛽𝛽1ln(𝑆𝑆𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝑉𝑉) + 𝛽𝛽2 ln(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝑉𝑉) + 𝛽𝛽3𝐴𝐴𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼ℎ_𝐴𝐴𝐼𝐼𝑚𝑚𝑇𝑇𝑆𝑆
+ 𝛽𝛽4𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑇𝑇 

4.2.3 Diverge Conflict Point Model 

The same procedure was used for Diverge crashes as crossing, with the volume-only negative 
binomial model resulting in adjusted R squared of 0.08993 and AIC of 1453. While all 
explanatory variables were significant, the low adjusted R squared indicates overall poor fit.  
This is to be expected with the extremely low counts for this category, as there were only 405 
total Diverge crashes. 

Modeling additional explanatory variables yielded no significant predictors in either model type, 
and even the volume only hurdle model struggled to improve the fit. The hurdle model resulted 
in only significant explanatory variables in the zero hurdle portion of the model and no 
significance in the count model, and a marginal improvement in AIC of 1450. Due to the 
marginal improvement in fit and lack of significance, hurdle results were not used for further 
analysis. 

4.2.4 Merge Conflict Point Model 

The negative binomial volume-only model for Merge crashes performed slightly better than the 
Diverge model. Overall, the model had an adjusted R squared of 0.14047 and an AIC of 2431. 
While still a low adjusted R squared, the model was fit on a total of 921 crashes as compared to 
the diverge.  

Similar to the Diverge model, no explanatory variables could be added with statistical 
significance, and utilizing the hurdle model showed slight improvements. The Merge Hurdle 
model resulted in an AIC of 2414. Due to the marginal improvement in fit and lack of 
significance, hurdle results were not used for further analysis. 
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Chapter 5 : Results and Recommendations 

5.1 Modeling Results 

Two groups of models were selected for final comparison to consider the practical impacts of 
added predictors. Group 1 is composed of four best fit models including all geometric features 
identified as statistically significant, with one model for NCP crashes and a conflict point model 
for each of the three (crossing, merge, and diverge) conflict point types. Group 2 also has four 
total models but only includes the movement demands as predictors. 

In each of the selected models for each group, the negative binomial model form or hurdle with a 
negative binomial count model was found to perform best, and as such the parameter estimates 
can be interpreted with the positive estimates indicating an increase in crashes with the parameter 
increasing and vice versa. For Group 1, the NCP model shown in Table 5-1 found that all 
approach speeds being under 35 mph reduced total crashes if volumes were held constant. Both 
the Group 1 and Group 2 models in Table 5-2 had increased volumes resulting in more crashes. 

To compare models, AIC, or Akaike’s Information Criterion, is used. AIC is a measure for 
comparing model performance among differing models using the same dataset. It is calculated 
based upon the number of predictors the model has as well as the maximum likelihood 
estimation of the model. There is no “magic” AIC value, but in general, lower AIC values are 
preferable.  

Table 5-1: NCP Full Group 1 Model (Negative Binomial) – Total Crashes 
Variable Estimate P Value 
Intercept -11.4529 <0.01 

log(MajorVol) 0.86102 <0.01 
log(MinorVol) 0.50789 <0.01 

Max PSL > 35 mph 0.16251 <0.05 
AIC = 1652, N = 211 
 
Table 5-2: NCP Simplified Group 2 Model (Negative Binomial) – Total Crashes 

Variables Estimate P Value 
Intercept -12.25 <0.01 

log(MajorVol) 0.93737 <0.01 
log(MinorVol) 0.52196 <0.01 

AIC = 1654, N = 211 
 
The Group 1 crossing conflict point model in Table 5-3 included one geometric and one control 
type variable as significant predictors in addition to movement volumes. Noted earlier, the 
approach angle indicator indicates that the two conflicting movements are at least 15 degrees (in 
either direction) off of the expected 90 degree or 180 degree angles on their approaches. Fewer 
crossing conflict crashes are predicted in both the zero hurdle and count portions of the model 
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when approach angle is true, which could be due to additional attention drivers give to these 
movements with irregular approach angles. “Not all Protected” indicates that at least one of the 
movements contains permitted or protected/permitted control. This variable was only significant 
in the count portion of the hurdle, where it indicated more crashes when at least one movement 
was permitted or protected/permitted. The Group 1 and Group 2 models in Table 5-4 predicted 
more crashes as volumes increased. 

Table 5-3: Crossing Full Group 1 Model – Total Crashes 
Count Model 

Variable Estimate P Value 
Intercept -7.1495 <0.01 

log(higher vol) 0.30582 <0.01 
log(lower vol) 0.37669 <0.01 

Approach Angle is True -0.92466 <0.01 
Not all Protected 0.51311 <0.01 

Zero Hurdle Model 
Variable Estimate P Value 
Intercept -10.3319 <0.01 

log(higher vol) 0.73283 <0.01 
log(lower vol) 0.36676 <0.01 

Approach Angle is True -0.45293 <0.01 
AIC = 6791, N = 2665 
 
Table 5-4: Crossing Simplified Group 2 Model – Total Crashes 

Variable Estimate P Value 
Intercept -8.8639 <0.01 

log(CMV higher vol ) 0.58038 <0.01 
log(CMV lower vol) 0.35987 <0.01 

AIC = 6959, N = 2665 
 
For diverge and merge, the recommended models for Group 1 and 2 were the simplified forms 
only due to the very marginal AIC improvements and the high number of insignificant volume 
explanatory variables in the detailed hurdle models. Table 5-5 and Table 5-6 predicted more 
crashes as volumes increased, with slight differences where the parameter estimates for the 
higher volume movement are greater in the merge model compared to the diverge model where 
the lower volume movement has a greater parameter estimate. 

Table 5-5: Diverge Simplified Group 2 Model – Total Crashes 
Variable Estimate P Value 
Intercept -8.3855 <0.01 

log(CMV higher vol ) 0.32842 <0.01 
log(CMV lower vol) 0.34888 <0.01 

AIC = 1453, N = 1392 
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Table 5-6: Merge Simplified Group 2 Model – Total Crashes 

Variable Estimate P Value 
Intercept -7.3265 <0.01 

log(CMV higher vol ) 0.34698 <0.01 
log(CMV lower vol) 0.30371 <0.01 

AIC = 2431, N = 1383 
 
Table 5-7 through Table 5-12 show the model results when predicting Fatal/Injury and PDO crashes 
separately. Overall, NCP and Crossing model results are similar to the total crash models, aside from the 
addition of “In CBD” to the NCP Full PDO model, where there are more PDO crashes within the CBD all 
else equal. However the sample size results in lower P values for Merge and Diverge models, with only 
the F/I Diverge model having a statistically insignificant predictor (highlighted red). 
 
Table 5-7: NCP Full Group 1 Model (Negative Binomial) – Fatal/Injury and PDO Crashes 

 Fatal/Injury PDO 
Variable Estimate P Value Estimate P Value 
Intercept -11.4529 <0.01 -12.9832 <0.01 

log(MajorVol) 0.86102 <0.01 0.97716 <0.01 
log(MinorVol) 0.50789 <0.01 0.51099 <0.01 

Max PSL > 35 mph 0.16251 <0.05 0.37950 <0.01 
In CBD -- -- 0.17126 <0.05 

AIC = 1164 | 1539, N = 211 
 
Table 5-8: NCP Simplified Group 2 Model (Negative Binomial) – Fatal/Injury and PDO Crashes 

 Fatal/Injury PDO 
Variables Estimate P Value Estimate P Value 
Intercept -13.7709 <0.01 -12.5122 <0.01 

log(MajorVol) 0.97368 <0.01 0.92423 <0.01 
log(MinorVol) 0.49720 <0.01 0.53354 <0.01 

AIC = 1172 | 1545, N = 211 
 
Table 5-9: Crossing Full Group 1 Model – Fatal/Injury and PDO Crashes 

Count Model 
 Fatal/Injury PDO 

Variable Estimate P Value Estimate P Value 
Intercept -7.26278 <0.01 -6.75981 <0.01 

log(higher vol) 0.35432 <0.01 0.19764 <0.05 
log(lower vol) 0.39995 <0.01 0.37695 <0.01 

Approach Angle is True -1.02185 <0.01 -1.02481 <0.01 
Not all Protected 0.49623 <0.01 0.45817 <0.01 

Zero Hurdle Model 
 Fatal/Injury PDO 

Variable Estimate P Value Estimate P Value 
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Intercept -10.8126 <0.01 -9.64337 <0.01 
log(higher vol) 0.70315 <0.01 0.60203 <0.01 
log(lower vol) 0.36388 <0.01 0.34004 <0.01 

Approach Angle is True -0.38555 <0.01 -0.59968 <0.01 
AIC = 4685 | 4893, N = 2665 
 
Table 5-10: Crossing Simplified Group 2 Model – Fatal/Injury and PDO Crashes 

 Fatal/Injury PDO 
Variable Estimate P Value Estimate P Value 
Intercept -10.1449 <0.01 -8.93961 <0.01 

log(CMV higher vol ) 0.63575 <0.01 0.51771 <0.01 
log(CMV lower vol) 0.37116 <0.01 0.35321     <0.01 

AIC = 4767 | 4981, N = 2665 
 
Table 5-11: Diverge Simplified Group 2 Model – Fatal/Injury and PDO Crashes 

 Fatal/Injury PDO 
Variable Estimate P Value Estimate P Value 
Intercept -9.39924 <0.01 -8.73796 <0.01 

log(CMV higher vol ) 0.2819 0.1201 0.33622     <0.01 
log(CMV lower vol) 0.3123 <0.05 0.35978 <0.01 

AIC = 442 | 1267, N = 1392 
 
Table 5-12: Merge Simplified Group 2 Model – Fatal/Injury and PDO Crashes 

 Fatal/Injury PDO 
Variable Estimate P Value Estimate P Value 
Intercept -9.38636 <0.01 -7.54544 <0.01 

log(CMV higher vol ) 0.51276 <0.01 0.30230     <0.01 
log(CMV lower vol) 0.17908 <0.05 0.35373     <0.01 

AIC = 953 | 2084, N = 1383 
 
Based on the marginal benefits of each of the detailed models, the research team recommends 
utilizing the simplified models due to the reduced data burden and easier implementation. In 
addition, the team recommends utilizing the F/I and PDO models for implementation with the 
sum of these two used as the total estimate as this is not guaranteed to be equal to the total crash 
model estimates. Ideally, further data collection including other states and more intersection and 
control types can support a more robust group of models. 

5.2 Sample Model Calculations  

Intersection-level crash frequencies at traditional four approach signalized intersections are 
estimated using a total of 33 model outputs- one NCP, sixteen crossing CP, eight diverge CP and 
eight merge CP. An example implementation of the F/I model types is shown below for each of 
the model forms: 
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NCP: Major – 21800, Minor – 16000 

𝐹𝐹/𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑆𝑆−13.7709+0.97368∗ln(21800)+0.4972∗ln(16000) = 2.1574 

 

Crossing CP 1: EBT – 3676, SBT – 6911  

𝐹𝐹/𝐼𝐼𝑁𝑁𝑟𝑟𝑚𝑚𝐶𝐶𝐶𝐶1 = 𝑆𝑆−10.1449+0.63575∗ln(6911)+0.37116∗ln(3676) = 0.2283 

 

Diverge CP 1: EBT – 3676, EBL – 2991 

𝐹𝐹/𝐼𝐼𝐷𝐷𝑖𝑖𝑣𝑣𝑒𝑒𝑟𝑟𝐷𝐷𝑒𝑒1 = 𝑆𝑆−9.39924+0.2189∗ln(3676)+0.3123∗ln(2991) = 0.0102 

 

Merge CP 1: SBT – 6911, WBL – 381  

𝐹𝐹/𝐼𝐼𝑀𝑀𝑒𝑒𝑟𝑟𝐷𝐷𝑒𝑒1 = 𝑆𝑆−9.38636+0.51276∗ln(6911)+0.17908∗ln(381) = 0.0226 

 

The remaining conflict points would all receive estimates, and the sum of all 33 models would be 
the intersection-level estimate for F/I crashes. 

5.3 Comparison of Combined Model Performance 

The recommended Group 2 simplified models were then utilized to estimate the total intersection 
crashes for the test dataset, which were compared to the observed intersection total using 
cumulative residuals (CURE) plot. Shown in Figure 5-1, when the cumulative residual line 
exceeds the 95th percentile boundaries, there may be some potential bias in the model estimates 
in that volume range. In contrast, Figure 5-2 shows no extreme bias against the minor AADT.  
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Figure 5-1: MBSPF CURE Plot vs Major AADT 

 

 
Figure 5-2: MBSPF CURE Plot vs Minor AADT 

 

Figure 5-3 shows a comparison of MBSPF and HSM predicted crashes for all sites (test and 
training) from Charlotte, with a clear difference in the spread of predicted crashes for the 
methods and a large cluster of overestimated crashes for the HSM at low to moderate observed 
crash sites. The trend lines show from the slope that the MBSPF model tends to estimate fewer 
total crashes per site but with a much lower variance, and tends to have lower overall error. This 
indicates a tradeoff of accuracy vs error, where some HSM estimates are very far from the 
observed values. It is important to note that HSM predictions were calibrated for North Carolina 
before comparison with MBSPF.  
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Figure 5-3: Predicted vs Observed Crashes with MBSPF and HSM Methods 
 
In addition, the MBSPF predicted total intersection crashes were compared to the HSM predicted 
crashes for the training dataset, and a test dataset which included 25% of the Charlotte dataset 
and 15 intersections from Cary, NC. The HSM estimates included all vehicle-related geometric 
and control features typically used as adjustment factors to provide the most accurate crash 
estimate using the state of the practice methods. The HSM inputs include Intersection Type, 
Major and Minor Road Type, Major and Minor AADT, Number of Approaches with Right and 
Left Turn Lanes, Signal Phasing by Approach, RTOR Prohibition, U-turn Prohibition, and 
Intersection Lighting. Table 5-13 shows that the root mean square error (RMSE) and mean 
absolute percentage error (MAPE) for the test dataset is approximately half for MBSPF 
compared to HSM predictions indicating much better predictions for the test dataset. 

Table 5-13: Test Dataset Error Comparison 
RMSE (Test) MAPE (Test) 

MBSPF HSM MBSPF HSM 
6.1 13.2 46.5% 87.3% 

 
5.4 Planning Level Crash Prediction Tool for Conventional Intersections 

A planning level crash prediction tool was developed in Microsoft Excel to implement the 
MBSPF model for conventional 3 and 4 leg signalized intersections with a screenshot shown in 
Figure 5-4. The tool requires basic planning level inputs relevant to either the MBSPF model 
prediction or traditional HSM crash predictions. Summary outputs are generated, with details 
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available for specific high risk movements in the MBSPF model. Table 5-14 shows the required 
inputs and which methods utilize them. 

 
Figure 5-4: Screenshot of Tool Input/Output Summary Page 

 
Table 5-14: Crash Prediction Tool Input Needs 

Inputs Method(s) using input 
Intersection Type MBSPF + HSM 

Major and Minor Road Type HSM 
Major and Minor AADT MBPSF + HSM 

Turning Movement Count(s) MBSPF 
Exclusive Right/Left Turning Lanes HSM 

Signal Phasing HSM 
RTOR Prohibition HSM 
U-Turn Prohibition HSM 

Intersection Lighting HSM 
 
5.5 Conclusions and Recommendations  

The research team identified many components of the crash data collection and classification 
process which can be adopted for future movement-based crash analysis. Specifically, the value 
of deeper investigation into the crash diagram and narrative allows for more accurate 
classification of crashes which may have initially been categorized into a non-conflict category. 
For instance, diverge crashes can often be indicated as sideswipe same direction or rear end 
while the narrative may describe one turning vehicle and one through vehicle. Relying solely on 
summarized directional data or basic crash classifications may result in a large underestimation 
of conflict-based crashes. In spite of all the effort to correctly classify crashes, the researchers 
understand that true conflict crashes are underestimated in these analyses due to lack of 

Project Name Instructions
Analyst First, enable macros for this file. Fill in Intersection and Approach/Movement features using dropdowns for all peach colored cells.

Date
Turning Movement Count Date(s) Next, enter the grand total of all available turning movement counts in the first blue colored row, followed by the AADT for each approach. 

Color Key Invalid movements should be replaced with 0, and any additional restricted movements should use 0.
Dropdown

Number Results are automatically calculated with each change, and detailed results for the MBSPF models is available in the second sheet.
Calculated

Results MBSPF Sources: MBSPFv1 MBSPFv2

Intersection Type 4 Approach Approach
N/S Road 4D Movement L T R L T R L T R L T R
E/W Road 4D Grand Total TMC (veh) 3711 6585 265 2991 3676 3683 1446 6911 2914 381 4087 1269
Lighting Present AADT (veh)
Red Light Cameras Not Present Adjusted 24h Volume (veh) 3711 6585 265 2991 3676 3683 1446 6911 2914 381 4087 1269

One way?
U-Turn Prohibted? No No No No
RTOR Prohibited? No No No No
Left Turn Phasing Permissive Permissive Permissive Permissive
At least one Exclusive Lane No No No No No No No No

Total Fatal/Injury PDO
HSM 21.89 10.08 11.81
MBSPFv1 11.74 3.46 8.40
MBSPFv2 9.81 0.00 0.00

Results

NB EB SB WB

No No Outbound No

21122 20700 22542 11474
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clarifying details in crash reports and narratives requiring unknown crashes to be assigned to the 
non-conflict category. 

The modeling process comprised of multiple model formulations to address the unique features 
of the dataset, specifically the overdispersion and frequent 0 crash observations found at 
individual conflict points. The researchers also considered the value of adding geometric and 
traffic control features relevant to each type of conflict point to better predict the crash 
performance. Overall, the set of models using additional data had only marginal improvements 
over a simplified model utilizing demand data only. Due to the small benefits seen, it is 
recommended that the demand only model formulation (Table 5-2, Table 5-4, Table 5-5, and 
Table 5-6) be used for planning level crash predictions for conventional 3 and 4 leg signalized 
intersections. 

Overall, the simplified group of models recommended resulted in favorable prediction of test 
data from North Carolina, with approximately 50% lower RMSE and MAPE in comparison to 
the state of the practice HSM prediction methods. The recommended models should also provide 
much higher fidelity of crash prediction for alternative intersection designs which incorporate 
traditional movements such as quadrant, CFI, PFI, or Jughandle intersections. The improved fit 
statistics are seen in the simplified MBSPF model form, where implementation would require 
fewer inputs than the HSM method for planning level intersection crash prediction.   

5.6 Future Research Recommendations 

The results found in this research indicate that conflict-based safety predictions can be done 
accurately and with more confidence than HSM predictions alone.  We believe there could be 
considerable value in considering MBSPFs for unsignalized intersection forms such as 
roundabouts and stop controlled intersections if future research incorporated unsignalized 
conflict points however there is already a strong literature basis of CMFs for these intersection 
types. In addition, conflict-based methods for predicting crashes along linear segments 
(corridors) with varying geometric elements (driveways, proximity to intersection, number of 
lanes on major, median type, etc.) could help build models that are more holistic and can be 
applied to a wider variety of projects.   
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Appendix A:  Data Analysis and Classification Detailed Procedures 

Data analysis for this project was a massive undertaking, requiring the analysis of over 19,000 crashes. To 
analyze these reports in a timely manner and with greatest accuracy, the dataset was split into numerous 
categories and distributed to multiple teams. The first split was between intersections that were deemed 
“cardinal” versus “non-cardinal”. Cardinal intersections had roads that could easily be identified as 
following a North/South and East/West categorization while non-cardinal intersections had to be assigned 
those unit labels. In deciding whether intersections were considered cardinal or non-cardinal, Google 
Earth Pro was used to find angle measurements at each intersection. If the intersection itself deviated 
from a 90 degree angle by more than 15 degrees then it was labeled non-cardinal. Additionally, if either 
road in the intersection deviated from cardinal directions by more than 15 degrees then the intersection 
was labeled non-cardinal. All the non-cardinal roads were assigned cardinal directions for consistency in 
data collection. 
 
The reports were then further subcategorized by crash types mentioned in the police report (e.g., angle, 
rear-end, head-on). This was done to reduce student work and reduce error as students would be assigned 
one specific crash type to analyze, but this has the drawback that students can not contribute to other data 
collection efforts as needed without additional training. The categorized crashes were assigned to 
“foremen,” staff members with training on the project and its requirements. In turn, each foreman would 
be responsible for training and leading around four students each in analyzing the reports. The foremen 
were generally responsible for their own QC checking.  
 
This approach encountered several problems. Firstly, any misunderstanding among the foramen was 
passed down to their student interns. Secondly, the first pass through error rate among students was, on 
average, far too high and required a second set of eyes. As a result, each incident was likely viewed two 
or three times. Finally, confusing cases were handled on an ad-hoc basis, resulting in multiple rounds of 
re-visits. To avoid these problems in the future, the team would centralize the training among foremen 
and student workers, such that they all receive the same basic knowledge. In addition, each report would 
be viewed three times by design, and the consensus among two of the three would be taken as the truth, 
and anywhere they all disagree would be assumed as a confusing case. The foremen would then meet to 
discuss the confusing cases and assign them as a result of group consensus. 
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Appendix B: Instructions for Classifying Crash Reports 

See attached PDF of training presentation. 
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